Acid Mine Drainage
Double Click any text word on this page

FOCUSING ON THE PROBLEM OF MINING WASTES: AN INTRODUCTION TO ACID MINE DRAINAGE

You Have the Right to Know
Under Section 5194, Title 8, California Adm Code:
The Properties and Potential Hazards of Materials to which You may be Exposed.
Print This Article
acid mind drainage from hell

by: Thomas V. Durkin1 and Jonathan G. Herrmann2

1) South Dakota Department of Environment and Natural Resources, Office of Minerals and Mining, Pierre, SD

2) U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH

Reprint From EPA Seminar Publication no. EPA/625/R-95/007 "Managing Environmental Problems at Inactive and Abandoned Metals Mine Sites"

presented at Anaconda, MT, Denver, CO, Sacramento, CA, 1994

(Call 513-569-7562 to order a free copy of the Seminar Publication)

Background

Mining waste, generated from active and inactive mining sites and from beneficiation activities, and its impact on human health and the environment are a continuing problem for government entities, private industry, and the general public. The nation's reported volume of mining waste is immense. A scoping study conducted by the Western Governors' Association Mine Waste Task Force (1) collected the following statistics on inactive and abandoned mines (IAMs) by state:

Arizona -- 80,000 IAM sites covering 136,653 acres, pollution 200 miles of surface waterways.

California -- 2,484 IAM sites, 1,685 mine openings, and 578 miles of polluted streams.

Colorado -- 20,299 mine openings and 1,298 miles of affected streams.

Idaho -- 27,543 acres affected by IAMs.

Missouri -- 7,655 IAM sites covering 48,175 acres, with 109 miles of affected streams.

Montana -- 20,000 IAM sites covering 153,800 acres, with 1,118 miles of stream damage.

New Mexico -- 25,320 acres and 69 miles of stream affected by IAMs.

Oklahoma -- 26,453 acres affected by IAMs.

Utah -- 25,020 acres affected by IAMs, with 83 miles of polluted streams.

Of this total volume, approximately 85 percent is attributed to copper, iron ore, uranium, and phosphate mining and related activities. Approximately one-half of the waste generated is mining waste and one-third is tailings, with the balance consisting of dump/heap leaching wastes and mine water.

Because of the extent of these problems, the U.S. Environmental Protection Agency in conjunction with the U.S. Department of Energy organized a series of seminars to disseminate available information on approaches for addressing mine waste. This document presents papers written by the seminar presenters, for which this introductory paper provides a general context.

Definition and Chemistry of Acid Mine Drainage (AMD)

The types of mine waste problems are numerous, but the most difficult one to address is the acid mine drainage (AMD) that emanates from both surface and underground mine workings, waste and development rock, and tailings piles and ponds. AMD is defined as drainage that occurs as a result of sulfide oxidation in rock exposed to air and water. In the case of iron sulfide (pyrite/marcasite), the chemical reaction in the acid-generating process can be simplified to:

FeS2 + 15/4 O2 + 7/2 H2O >>> Fe(OH)3 + 2SO4 + 4H

In the presence of oxygen and water, pyrite oxidizes to form iron hydroxide (commonly called "yellowboy"), sulfate, and hydrogen ions. The liberation of hydrogen ions causes acidity in water passing over the rock. Every mole of pyrite yields four moles of acidity.

AMD can be characterized by low pH and increased acidity, elevated heavy metals, sulfate, and total dissolved solids (TDS). The low pH water that results from acid generation is capable of solubilizing heavy metals contained within the waste rock. Most harmful to the environment is the high metals loading in the water emanating from the waste material. As AMD flows away from the acid-generating source and moves into the receiving environment where the pH is buffered, discoloration of the stream bed or the material that the AMD is passing over often is caused due to precipitation of solid metal hydroxides.

Stages in the Development of AMD

The development of AMD involves a complex combination of organic and sometimes inorganic processes and reactions. In order to produce severe acid drainage, where the pH of the system drops below 3, sulfide minerals must create an optimum microenvironment for rapid oxidation and must continue to oxidize to oxidize for a sufficiently long time to exhaust all of the neutralization potential of the rock (2). The potential of sulfide rock to generate acid is strongly related to the amount of alkaline, often calcareous, material in the rock. For example, a rock containing 5 percent sulfide minerals may not generate acid due to an overabundance of calcite in the rock that is available for acid neutralization. Another rock, containing less than 2 percent sulfide minerals might generate a considerable amount of acid if no neutralizing minerals are present within it.

When reactive sulfide rock is initially exposed to flowing water and oxygen, sulfide oxidation and acid generation begins. Any calcium-based carbonate in the rock immediately neutralizes this small amount of acidity and maintains neutral to alkaline conditions in water passing over the rock (3). As acid generation continues and the neutralizing agent is consumed or is rendered ineffective in further neutralization, the pH of the water decreases, which in turn enhances the conditions for further acid generation. As the rate of acid generation accelerates, the pH progressively decreases in a step-like manner. Each plateau of relatively steady pH represents the dissolution of a neutralizing mineral that becomes soluble at that pH (3). If the rate of acid generation remains high enough to remove all of the neutralization potential in the rock, the pH values will drop below 3 and AMD will become severe. These various stages can last for weeks, months, or centuries until the sulfide minerals completely oxidize and the rock becomes inert, or until special waste management and AMD control actions are taken.

Prediction of AMD

The prediction of AMD in particular, is a rapidly evolving science. Predictive tests specifically designed for sulfitic coal mine wastes have been around for decades. Significant advances in the predictive techniques applied to hard rock metal mine waste samples have been made in the past 5 to 10 years. Recent studies have been conducted comparing various predictive tests for hardrock samples (4,5). Accurate predictive testing, proper waste rock characterization, and proper interpretation of the resulting data are all of paramount importance in developing successful sulfide waste rock management techniques. Conducting proper predictive tests prior to developing waste management plans is the preferred choice from an environmental as well as an economic standpoint. Millions of dollars can be saved as a result of focusing on preventing AMD rather than reacting to problems it can cause.

Predictive analyses can range from simple comparisons to complex laboratory testing and computer modeling. A simple, but very useful, assessment might include comparing a proposed mining operation with geologically similar and/or nearby mines where acid generation is known to be a problem or not. Rock samples may undergo relatively inexpensive, short-term "static" predictive testing (e.g., acid/base accounting) in which the amount of acid-generating potential of the rock is weighed against the acid-neutralizing potential of the rock. Static tests are qualitative tests only. Rock types that undergo static tests that result in an indication for potential acid generation may undergo more expensive, long-term "kinetic" tests (e.g., humidity cells or column leach tests) in which actual weathering reactions are simulated in the laboratory. Kinetic tests are qualitative indicators of the rate and amount of acid that a given sample may generate.

Control of AMD

Much of the effort to control AMD in the past has been directed at treating the symptoms rather than controlling the problem at the source. In the early 1990's, significant research was undertaken to develop improved sulfide waste management techniques for hardrock mines. Control of acid generation can be achieved by removing one or more of the three essential components in the acid-generating process (i.e., sulfide, air, or water). Steps that can be taken to control AMD include:

Waste segregation and blending. This would include thoroughly blending the acid-generating rock with enough rock of a net neutralizing potential, that neutral pH levels within the waste system are maintained.

Base additives. Alkaline materials such as limestone, lime, and soda ash can be added to the sulfide rock upon disposal to buffer acid-generating reactions.

Covers and caps. Soil, clay, and synthetic covers can be placed over the acid-generating rock to minimize the infiltration of water and air into the system. Water covers at acid-generating tailings impoundments have been effective in controlling the problem.

Bactericides. The introduction of certain chemicals that reduce the bacteria (Thiobacillus ferrooxidans) that catalyze the acid-generating reactions have been effective in controlling AMD.

Collection and treatment of contaminants. In this case, AMD is collected and treated using active or passive treatment systems. Active treatment might include base additives to precipitate metals out of solution, remove the resulting sludge, and discharge the treated water. Passive treatment might include passing contaminated water through a constructed wetlands designed to remove contaminants. These control options are less attractive in the long term because they treat the symptoms of AMD rather than controlling the problem at the source.

Bioremediation. The use of microorganisms to remove metals from mine drainage.

Conclusions

AMD and the sources of its production are the legacy of over 100 years of mining in the western United States. AMD has been a problem in the eastern United States and throughout the world even longer. The presentations in this publication describe only a small fraction of the current thinking and ongoing research to address the issue of mining wastes in general, and AMD in particular, using comprehensive and cost-effective approaches. The problem of mining wastes is daunting. An all inclusive description of the types of environmental issues posed by mining wastes is beyond the scope of this document. Nonetheless, the case histories presented reflect common mine waste problems and provide insight to state-of-the-art management techniques. Although these techniques have been used to successfully address aspects of mine waste, they warrant further research and site application. For the country's best scientists and engineers, the challenge presented by mine wastes involves developing solutions to problems created in the past, while seeking ways to avoid these problems in the future.

References

1. Interstate Mining Compact Commission (IMCC), 1992. Inactive and abandoned non-coal mines: A scoping study. Prepared for IMCC of Herndon, VA, by Resource Management Associates, Clancy, MT. Cooperative Agreement X-817900-01-0 (July).

2. Steffen, Robertson and Kirsten (B.C.) Inc., in association with Norecol Environmental Consultants and Gormley Process Engineering. 1989. Draft acid rock drainage technical guide, vols. 1 and 2. ISBN 0-7718-8893-7. Prepared for the British Columbia Acid Mine Drainage Task Force. BiTech Publishers, Richmond, British Columbia, Canada.

3. Broughton, L.M., Chambers, R.W., and Robertson, A. MacG. 1992. Mine rock guidelines: Design and control of drainage water quality. Report No. 93301. Prepared by Steffen, Robertson and Kirsten (B.C.), Inc. for Saskatchewan Environment and Public Safety, Mines Pollution Control Branch. Vancouver, British Columbia, Canada.

4. Coastech Research Inc. 1989. Investigation of prediction techniques for acid mine drainage. DSS File No. 30SQ.23440-7-9178. Report to Canada Center for Mineral and Energy Technology for Mine Environment Neutral Drainage (MEND) Program. MEND Secretariat, Ottawa, Ontario, Canada.

5. Lapakko, K. n.d. Evaluation of tests for predicting mine waste drainage pH. Draft report to the Western Governors' Association by Minnesota Department of Natural Resources, St. Paul, MN

toxic gusher from hell

Mine Water Poses Danger of a Toxic Gusher

Kevin Moloney for The New York Times

Emily Medina, center, with two other residents of Leadville, Colo., who gathered last week for the testing of an alarm system.

LEADVILLE, Colo. - In a snowswept trailer park, Emily Medina wakes each morning wondering whether she will be washed away by toxic water that local officials fear could burst from a decaying mine tunnel near her home.

Like many of the 2,800 people in this old mining town, where wealthy prospectors and infamous gunslingers once flocked, Ms. Medina, a housekeeper at a hotel in Vail, is afraid of losing her property, or worse.

"They should get us out of here," she said. "They need to do something before it's too late."

This month, Lake County commissioners declared a state of emergency over concerns that rising levels of contaminated water could burst from the Leadville Mine Drainage Tunnel and flood the town.

For years, the federal Bureau of Reclamation and the Environmental Protection Agency have bickered over what to do about the aging tunnel, which stretches 2.1 miles and has become dammed by debris. The debris is holding back more than a billion gallons of water, much of it tainted with toxic levels of cadmium, zinc and manganese.

The threat posed by the tunnel is the latest misfortune for the town, which is grappling with the wreckage of more than a century of mining.

"Everybody made a lot of money in Leadville," said Ken Olsen, a county commissioner. "They left years ago, and we've had to clean up after them ever since."

In the late 1800s, a gold and silver boom made Leadville one of Colorados most colorful places, drawing the likes of the Guggenheims. Legend has it that Doc Holliday fought his final gunfight here.

Gold and silver gave way to zinc and lead mining, encouraged by the federal government for the war effort during World War II and the Korean War. Molybdenum, used to fortify steel, was blasted out of the mountains for years at the Climax mine.

In 1983, the E.P.A. listed the area as a Superfund site because of mine tailings and runoff. Three years later, after a sharp decline in the price of molybdenum, the Climax mine shut down, stripping Leadville of its heart.

"So many people had to leave the community," said Bob Elder, a retired mining engineer. "A lot of us felt lost. There was no life left here for quite a while."

The town has recast itself as a tourist destination ' North America's highest incorporated city, at 10,152 feet, where people can peruse its tiny Victorian-style main street, drink at the Silver Dollar Saloon or ride a scenic railroad. Miners have been replaced by Mexican immigrants, who commute over the mountains to work at ski resorts.

Abandoned mine shafts honeycomb the surrounding hillsides. The old drainage tunnel, built by the federal government in 1943 to drain hundreds of these shafts, began falling apart in the 1970s, causing water to pool. In 2005, the E.P.A. offered to start pumping the clogged water toward a Bureau of Reclamation plant, which treats the water flowing through the tunnel; but the bureau contended that the additional water was part of the E.P.A.'s Superfund cleanup responsibility. A plan for the state to take over the plant subsequently fell through.

Last year, the warnings grew louder. Brad Littlepage, who manages the Bureau of Reclamation treatment plant, says he told supervisors, to no avail, about the tunnel's deterioration. The risk, as he and other experts saw it, was that pressure from the backed-up water had become so intense that it threatened to burst through the blockages and cascade out of the tunnel.

A spokesman for the Bureau of Reclamation, Peter Soeth, said that Mr. Littlepage's concerns had been considered but that the agency's experts had concluded that the tunnel's condition did not pose an immediate threat.

Last November, Robert E. Robert, a regional administrator for the E.P.A., sent a letter to the bureau warning of the possibility of a ?potentially catastrophic release of water" from the tunnel.

Since May 2005, the level of water has risen 50 feet, creating a pool that is now 150 feet deep, said Jord Gertson, a hydrogeologist who works for the E.P.A.

A substantial snowpack this winter has put even more pressure on the tunnel.

For the Lake County commissioners, the bureaucratic wrangling had gone on long enough. The commissioners' state of emergency declaration on Feb. 13 brought a visit from Senator Ken Salazar, a letter from Gov. Bill Ritter Jr. to President Bush and a hearing last week at the State Capitol. Despite the frustration, Mayor Bud Elliott worries that the attention will harm Leadville's economy. Two days after the county's declaration, the town was notified that its property and liability insurance would not be renewed because it had become too risky, Mr. Elliott said.

"People are canceling vacations," he said. "We've had two children withdrawn from school because their parents are afraid."

The E.P.A. has since agreed to spend $1.5 million to drill into the tunnel and begin pumping the water into the Bureau of Reclamation's treatment facility.

One frigid evening last week, a test of emergency sirens rang out through the trailer park where Ms. Medina and 300 other people live. Shania Sooter, 9, clasped her hands to her ears. "They're going to show us what to do in case there's a flood from the mine," she said.

As a muffled recording broadcast warnings in English and Spanish, a herd of elk wandered down from the mountains. Down the road, peering out from behind the peaks, the yellow lights from the old Climax mine continued to burn through the night.


Tell Congress Not to Allow Mining on Public Lands

November 14, 2005

This week, the House of Representatives is scheduled to vote on the federal budget, which currently contains a proposal that would weaken US mining laws. If passed, the proposal would put millions of acres of public land, including lands considered sacred to Native Americans, up for sale.

Click here to take action and tell your member of Congress to say no to selling off America`s public lands.

This could affect several of Oxfam America`s partners, including the Western Shoshone Defense Project. For years, the Shoshone have been fighting to keep gold mining companies away from Mt. Tenabo, Nevada. This proposal would give mining companies the option of tearing up Mt. Tenabo without any input from the Shoshone.

A Public Lands Fire Sale

Rep. Richard Pombo (R-CA), chair of the House Resources committee, is sponsoring the proposal. It would allow multinational corporations to buy our public lands -- whether they contain minerals or not.

We need your help now. Tell your Representative to vote down the Budget bill so long as it contains the Pombo mining proposal. Click here to e-mail your representative today.

Congress has a responsibility to manage the nation's public lands for the benefit of all American citizens, now, and for future generations. Thank you for taking action to ensure Congress lives up to that responsibility.

Oxfam America wants the mining industry to respect the rights of poor people and contribute to the long-term reduction of poverty. Click here to learn more.

Sincerely,

Keith Slack
Extractive Industries Campaign Manager


Donate | Who We Are | What We Do | What You Can Do | News & Publications | Contact Us


Help today!

Are gifts that contain gold on your shopping list this holiday season? Something you should know first: producing just one gold ring generally creates 20 tons of mine waste that can contaminate rivers and oceans. But, we have the power to change this dirty fact.
https://go.care2.com/e/HxF/ei/CeHv

Toxic chemicals such as cyanide and mercury that are used in producing gold have polluted drinking water supplies, contaminated farmland, and harmed the health of workers and communities. Gold mining operations can also leave a trail of social destruction, displacing communities from their homelands against their will and destroying traditional livelihoods.

Safer mining practices are possible, and the holiday season is the perfect time to let the jewelry industry know that change is needed. Sign our No Dirty Gold Pledge and we'll show jewelry firms how many people want them to do the same. Your voice will let them know that the gold they buy and sell should be produced in ways that do not harm communities, workers, and the environment:
https://go.care2.com/e/HxF/ei/CeHv

Already, Tiffany & Co. has responded to requests from concerned people like you. This is a critical first step: jewelers may not operate heavy equipment at mine sites, but more than 80 percent of gold mined each year is used to make jewelry. (Interesting that only 20% is used for technology and industry.) Jewelry firms are thus uniquely positioned to help make real change in gold mining practices.

There are some practices that are just too dirty to accept under any circumstances -- such as dumping mine waste directly into rivers or the ocean. Sign today to make global change happen.

Thanks for your help today,

Hilary S.
Care2 and ThePetitionSite.com

INTERNATIONAL / ASIA PACIFIC | December 27, 2005
The Cost of Gold | The Hidden Payroll:� Below a Mountain of Wealth, a River of Waste
By JANE PERLEZ and RAYMOND BONNER
Freeport, one of the world's largest mining companies, has dumped tons of waste into one of the world's last untouched landscapes while digging for gold in Indonesia. (article access requires free online subscription)


[Holy Life, Healing MindN] [Make a monumental difference - join Sierra Club today.] [Are These The Most Controversial and Suppressed Medical Technologies?] [Healing MindN Body Spirit Connection] [Bioenergetic Spectrum] [Essential Nutrition Spectrum]
© Copyright 1999 - 2018 HealingMindN.  All rights reserved.

care2 petitionsite actionAlert

What would you do if a mine located near your home spilled cyanide into your water supply, not once but twice? If the mine's blasts cracked televisions and even walls?

This is the situation of the people of Prestea, Himan and Dumase in Southwest Ghana, and now the mine's owners, Golden Star Resources, want to expand the mine.

Protect the people of Ghana from this threat to their lives and livelihood.»

This expansion would include leveling low-income housing and schools, and it's being done without the adequate consideration of the community's concerns.

The people in these communities have a right to decide whether a mine can expand in their community or not, and you can help them. Tell Golden Star Resources to listen to the people whose lives they're affecting.

Help defend community rights in Ghana. Sign the petition today.»

Thanks for taking action!

Samer
Care2 and ThePetitionSite




Ghana
Take Action!
Cyanide spills from the mine contaminated local rivers and streams in 2004 and 2006, and Golden Star Resources has yet to commission the independent health investigation requested by community members.